
The PhD projects listed below will be considered for 2025/26
studentships available in the Department of Informatics to
start on 1 October 2025 or later during the 2025/26 academic
year.

Please note that this list is not exhaustive and potential
applicants can alternatively identify and contact appropriate
supervisors outlining their background and research interests
or proposing their own project ideas.

Each project is designated for a single student, meaning it can
only be assigned to one successful applicant. Some projects
come with allocated studentships, while others are eligible for
"unallocated" studentships. Applicants who apply for projects
with allocated studentships and are selected will be offered a
full studentship. In the project list, these are marked as
"studentship allocated." Applicants chosen for other projects
will compete for the unallocated studentships.

We welcome applications from students who have secured, or
are applying for, or plan to apply for other funding (within
other studentships internal to the university or external
schemes) and from self-funded students. See also this list of
funding opportunities available at King's for post-graduate
research in Computer Science.

PhD projects in the Department of
Informatics, AY 25-26 — Systems (software
engineering, programming)

https://www.kcl.ac.uk/study-legacy/funding?subject=computer-science-16&level=postgraduate-research
https://www.kcl.ac.uk/study-legacy/funding?subject=computer-science-16&level=postgraduate-research
https://www.kcl.ac.uk/study-legacy/funding?subject=computer-science-16&level=postgraduate-research


PhD projects
Debugging and runtime visualisation in a frame-based system (studentship allocated)
Nominal Specification and Verification Environments (studentship allocated)
Reliable source-level debugging of optimised code by stateful approaches
Visual live programming in scientific computing and similar domains
Brzozowski Derivatives for Fast Regular Expression Matching
Leveraging Language Models for Contextual Vulnerability Identification
Validation and Testing of GPUs
Software sustainability analysis and improvement
Verified Complexity Theory: Probabilistic Computation and Verified Post-Quantum
Cryptography
Software Verification and Nominal Dependent Type Theory
Privacy in the Internet of Things



Debugging and runtime visualisation in a frame-based system
Supervisor: Prof Michael Kolling / Dr Neil Brown

Areas: Human-centred computing (human-computer interaction), Computing Education, Systems (software
engineering, programming)

Project Description

Frame-based editing is a novel program manipulation paradigm that combines advantages from both text-based and
block-based editors. It has been implemented in the Stride language [1], and in the online Strype system [2]. The
visualisation possibilities embedded in frame-based editors provide opportunities for improved debugging and runtime
visualisation functionality, beyond what is available in typical text-based or block-based systems. The goal of this project
is to design and implement novel debugging/visualisation functionality in a frame-based system. Candidates for this
project must have exceptional programming skills in multiple languages, a deep understanding of object-orientation,
interest in HCI and in programming education.

References

[1] https://stride-lang.net [2] https://strype.org



Nominal Specification and Verification Environments
Supervisor: Maribel Fernandez

Areas: Foundations of computing (algorithms, computational complexity), Systems (software engineering,
programming)

Project Description

Software verification techniques have been successfully used to prove correctness of low-level programs, but verification
of high-level programming languages is challenging: it requires reasoning about name binding (e.g., visible/hidden
channel names, scoping rules defining local and global variable names, parameter passing and substitution of values for
variables). A standard approach to deal with name binding in verification tasks is to replace names with numerical codes
(de Bruijn indices). While this avoids some of the difficulties of reasoning about names in programs, conducting a
formalisation in de Bruijn style is labour-intensive and imposes a significant overhead to comprehending and reusing
proofs. Nominal techniques offer an alternative, user-friendly approach, which does not require to replace names with
codes. We aim to apply novel nominal techniques to simplify the handling of names and binders in programming
languages and verification tasks (e.g., verification of blockchain languages). For this, we aim to develop a core nominal
calculus and use it as a basis to enrich with nominal features two successful verification frameworks: Maude and K.



Reliable source-level debugging of optimised code by stateful
approaches
Supervisor: Stephen Kell

Areas: Systems (software engineering, programming)

Project Description

Debugging optimised code, as generated by ahead-of-time compilers such as GCC and LLVM, has long been poorly
supported by existing tools and infrastructure. A recurring semantic bottleneck is that there is no comprehensive way to
retain state in the debugger -- for example, when a local variable is eliminated by the compiler and cannot be
reconstructed computationally from other program state. Instead of such a comprehensive approach, there are several
obscure and highly partial mechanisms which do this "by the back door" but are poorly specified and rarely well-
implemented. These include "location views" and "entry values". There are also other debugging tools, such as rr or
UndoDB, which maintain large amounts of additional state, at a cost of sometimes large slowdown. This thesis project will
investigate how to evolve our current execution infrastructure in commodity debuggers, operating systems and language
implementations to provide reliable source-level debugging using stateful approaches. For example, it may devise an
overhaul to DWARF debugging information that provides a general and elegant approach to debugger-side state. It may
develop efficient hybrids that bridge the gap between powerful but state-heavy recording techniques and the lightweight
convenience of attaching the debugger only when needed. And it is likely to explore, to some extent, the usability issues
inherent in more stateful tools that add a fresh layer of illusion over the code that is actually running. It builds on our
EPSRC-funded prior work and DARPA-funded ongoing work, so will not be starting from scratch.



Visual live programming in scientific computing and similar domains
Supervisor: Stephen Kell

Areas: Systems (software engineering, programming), Human-centred computing (human-computer
interaction)

Project Description

Currently, working interactively with data means either using a pre-built application offering a fixed interface, which is
visual and interactive but offers limited programmability, or using custom workflows built by programming/scripting or
command-line wizardry, which are flexible but technically demanding and far less visual and interactive. Computational
notebooks like Jupyter are in some senses a third way, being somewhat visual, and have proven approachable by those
seeking to learn programming 'on the job'. However, they currently suffer many usability and reproducibility issues, and
still present a 'walled garden' environment with poor integration into the surrounding system. This PhD is about ways to
combine the interactivity of applications and the flexibility of command lines, possibly by designing a notebook system
that works differently than Jupyter et al. We observe that crude operating system (OS) interfaces are the bottleneck to
interoperable, visual programming, since they lack a rich data model on which to build visualisation as a system-wide
service; this is what leads to smaller-scope walled-garden approaches. Recent work adding run-time type information to
native code has shown that such limitations can be overcome without defining an entirely new platform. This project will
pursue similar approaches encompassing file data and graphical user interface elements. The objective is to demonstrate
a graphical workspace that is highly compatible and interoperable, dealing in files of existing formats, but can support
working visually and programmatically via a palette of small, composable, user-tailorable graphical tools. Target
audiences include computational scientists, data scientists, digital artists and the like. The project requires systems
programming skills and an interest in human-- computer interaction topics.



Brzozowski Derivatives for Fast Regular Expression Matching
Supervisor: Christian Urban

Areas: Foundations of computing (algorithms, computational complexity), Systems (software engineering,
programming)

Project Description

If you want to connect a computer directly to the Internet, it must be immediately hardened against outside attacks. The
current technology for this is to use regular expressions in order to automatically scan all incoming network traffic for
signs when a computer is under attack and if found, to take appropriate counter-actions. Unfortunately, algorithms for
regular expression matching are sometimes slow and inefficient. My research is about making breakthroughs in this area.
The results are also applicable to DNA searches, security, compilers and algorithms. In addition I am interested in
supervising topics in programming languages, formal methods, functional programming, Rust and theorem provers. Skills
in these areas are in high demand in both industry and academia: my former PhD students work now at ARM and
Imperial College London.



Leveraging Language Models for Contextual Vulnerability Identification
Supervisor: Maher Salem

Areas: Artificial Intelligence (symbolic AI, logic, etc.), Machine learning / Deep learning, Cybersecurity,
Systems (software engineering, programming)

Project Description

As software systems grow increasingly complex, the need for effective vulnerability detection methods becomes
paramount. Traditional static analysis tools often struggle to identify context-specific vulnerabilities due to their reliance
on predefined patterns and rules. This research proposes leveraging advanced language models, such as transformers, to
enhance the identification of vulnerabilities in software code by understanding its context. The central idea of this topic is
to explore how large language models (LLMs) can be trained to analyze code not merely as isolated snippets but as part
of a larger context. By fine-tuning LLMs on extensive datasets that include both vulnerable and secure code, the model
can learn to recognize subtle patterns and interactions that indicate potential vulnerabilities. This approach aims to move
beyond conventional methods by incorporating an understanding of how different code components interact with each
other, thereby improving detection accuracy. The research will involve several key phases. First, a comprehensive dataset
will be curated, containing various programming languages and a range of vulnerability types, such as SQL injection,
cross-site scripting, and buffer overflows. This dataset will serve as the foundation for training the language models.
Next, the study will focus on developing a framework that integrates the LLMs into an existing vulnerability detection
pipeline, allowing for real-time analysis and feedback during the software development lifecycle. Furthermore, the
research will explore the effectiveness of different model architectures and training techniques, including transfer learning
and few-shot learning, to optimize performance. By evaluating the models against established benchmarks and real-world
codebases, the study aims to quantify improvements in vulnerability detection rates compared to traditional static
analysis tools. Another important aspect of this research is the interpretability of the model's predictions. It is crucial for
developers to understand why a particular piece of code was flagged as potentially vulnerable. Therefore, the study will
investigate methods to enhance the transparency of LLMs, providing explanations that can guide developers in addressing
identified vulnerabilities. Ultimately, this research seeks to contribute to the field of cybersecurity by providing a novel
approach to vulnerability detection that leverages the capabilities of modern AI. By harnessing the contextual
understanding of language models, the goal is to create more robust and intelligent tools that can significantly enhance
software security, helping developers proactively identify and mitigate vulnerabilities before they can be exploited.

References

DOI: 10.1145/3460318.3464820
DOI: 10.1145/3404835.3462831
DOI: 10.1145/3397670
DOI: 10.1109/TSE.2020.2986860



Validation and Testing of GPUs
Supervisor: Hector Menendez, Maribel Fernandez and Karine Even-Mendoza

Areas: Foundations of computing (algorithms, computational complexity), Systems (software engineering,
programming)

Project Description

Considering the rise of graphics and machine learning libraries, Graphics Processing Units (GPUs) are becoming
increasingly relevant, especially for solutions that aim to train large machine learning models. GPUs can significantly
reduce the training and inference time of these models by employing multiple graphics kernels. Although these systems
present a significant promise for advancing AI and other dependent systems, their reliance on floating point operations
limits how they can be validated and tested. The literature shows various contributions to the process of testing GPUs,
with the most notable being the work of Alastair Donaldson. He initially developed the GPUVerifier (Betts et al., 2012) and
later focused on the problems of concurrency (Alglave et al, 2015) and automatic testing of system rendering (Donaldson
et al., 2017). Considering current rendering technologies that focus on universal platforms, such as browsers, through
WebGPU technologies (Bernhard et al. 2024), it is also important to evaluate the quality of these specific APIs to ensure
that GPU resources are properly utilized and optimized. The main goal of this PhD is to define different verification and
testing strategies to validate new GPU technologies. To achieve this, the PhD will start by investigating the work of
Alastair Donaldson and others on GPU evaluation, including the GPUVerifier, WebGPU evaluation system, GraphicsFuzz,
and other strategies adapted for GPU validation. It may also be beneficial to explore how the testing and validation
methods apply to similar accelerators, such as Tensor Processing Units (TPUs) and Neural Processing Units (NPUs). These
hardware accelerators are becoming increasingly common in AI. Investigating how these methods translate to TPUs and
NPUs could provide additional opportunities for optimizing and ensuring the robustness of AI systems. The thesis will be
divided into: Part 1: Literature Review and Identification of Gaps in the Literature: Identify gaps related to the problem of
sandboxing current browser APIs and improving the security of systems against potential adversarial attacks. Part 2:
Verification: Design different verification strategies based on formal verification methods. These methods will work within
a determined context to bound the system's complexity and manage a deeper analysis for validation. Part 3: Testing and
Fuzzing: Redesign testing methods to identify specific use cases that expose vulnerabilities in GPU-based systems. These
methods focus on the specific technological context, particularly concurrency and floating-point. This PhD will contribute
to the development of robust verification and testing strategies, ensuring the efficient and secure use of GPUs in modern
computing applications.

References

Alglave, J., Batty, M., Donaldson, A. F., Gopalakrishnan, G., Ketema, J., Poetzl, D., ... & Wickerson, J. (2015). GPU concurrency: Weak
behaviours and programming assumptions. ACM SIGARCH Computer Architecture News, 43(1), 577-591.
Bernhard, L., Schiller, N., Schloegel, M., Bars, N., & Holz, T. (2024). DarthShader: Fuzzing WebGPU Shader Translators & Compilers.
arXiv preprint arXiv:2409.01824.
Betts, A., Chong, N., Donaldson, A., Qadeer, S., & Thomson, P. (2012, October). GPUVerify: a verifier for GPU kernels. In Proceedings
of the ACM international conference on Object oriented programming systems languages and applications (pp. 113-132).
Donaldson, A. F., Evrard, H., Lascu, A., & Thomson, P. (2017). Automated testing of graphics shader compilers. Proceedings of the
ACM on Programming Languages, 1(OOPSLA), 1-29.



Software sustainability analysis and improvement
Supervisor: Kevin Lano

Areas: Systems (software engineering, programming), Machine learning / Deep learning, Artificial Intelligence
(symbolic AI, logic, etc.)

Project Description

The project would consider techniques for analysing software sustainability (in the sense of energy use and energy
efficiency) using rule-based analysis and refactoring, or by the use of deep learning techniques such as LLMs to identify
energy use flaws and potential refactorings. It would be particularly useful to consider analysis and refactorings at the
specification or design levels of a software system, in order that programming-language independent advice and
improvements can be made. There is the potential for industrial collaboration in this area.

References

(Lano et al., 2024a) K. Lano et al., "Software modelling for sustainable software engineering", STAF 2024.
(Lano et al., 2024b) K. Lano et al., "Design Patterns for Software Sustainability", PLoP 2024.



Verified Complexity Theory: Probabilistic Computation and Verified
Post-Quantum Cryptography
Supervisor: Mohammad Abdulaziz

Areas: Foundations of computing (algorithms, computational complexity), Systems (software engineering,
programming)

Project Description

In 1971, Cook [9] formulated the question P vs. NP for the first time. To this day, this question has not been solved, but
could be argued to have been a steady motivator in the field of complexity theory. Many other complexity classes have
been defined and studied, like PSPACE, EXP, their nondeterministic variants NPSPACE, NEXP and the polynomial hierarchy
PH. The introduction of probabilistic computational models led to further classes like BPP, PP and IP. The relationship
between these classes is still being investigated, but there have been some conditional and unconditional results, like
PSPACE = NPSPACE [?] and IP = PSPACE [20]. In this project, I propose the use of Interactive Theorem Provers (ITPs)
(aka proof assistants) to the area of computational complexity. ITPs are mechanised mathematical systems, i.e. systems
which can be used to develop machine-checkable (aka formal) proofs. To prove a theorem in an ITP, the user provides
high-level steps of a proof, and the ITP fills in the details, at the level of axioms, culminating in a formal proof. The fact
that ITPs can use human expertise is a source of their strength in many applications, e.g. when the properties to prove
are undecidable. ITPs have been used to formally prove results from a large number of areas, ranging from the
correctness of realistic software systems [16, 14, 13] to formally prove results from more theoretical areas of computer
science, especially efficient algorithms and combinatorial optimisation, e.g. algorithms for matching [3, 2], minimum-cost
flows [1], maximum flows [15], the simplex algorithm to optimally solve linear programs [17], and geometric algorithms
[19]. Furthermore, ITPs are currently attracting the attention of mathematicians and are being used to formally prove
many important results in pure mathematics [8, 4, 10]. However, despite all these applications, ITPs have not been used
to formally prove anything but the rather elementary results from complexity theory. Most relevant to this proposal, ITPs
were recently used to formally prove the Cook-Levin-Theorem, which states that SAT is NP-complete, by Gaher and
Kunze [11] in the ITP Coq and Blabach in the ITP Isabelle/HOL [6]. A notable complication when using ITPs to formally
prove results from complexity theory is the difficulty of formal reasoning about computational models. Indeed, such
reasoning requires the development of a reasoning infrastruc- ture, including formally proving many theorems and
developing methods to automate proofs. For instance, Balbach used Turing machines as their underlying computation
model, which Gaher and Kunze used Lambda calculus. In this project, you will develop a framework for formal reasoning
about probablistic computation models, e.g. Turing machines with a source of random bits. One application area of such a
reasoning framework is verifying randomised complexity theoretic reductions. A notable example is the NP-Hardness
proof of the problem of Learning with Errors by Atjai [5], which is used to prove the security of CRYSTALS-KYBER [7],
one of the few NIST approved post-quantum cryptographic algorithms. An outcome could thus be an implementation of
CRYSTAL-KYBER that is formally verified to be secure. Methods that you will need to master include developing
automation for the ITP Isabelle/HOL [18] and applying quantitative program logics [12, 21].

References

[1] Mohammad Abdulaziz and Thomas Ammer. A Formal Analysis of Capacity Scaling Algorithms for Minimum Cost Flows. In The 15th
International Conference on Interactive Theorem Proving (ITP 2024).
[2] Mohammad Abdulaziz and Christoph Madlener. A Formal Analysis of RANKING. In The 14th Conference on Interactive Theorem
Proving (ITP).
[3] Mohammad Abdulaziz, Kurt Mehlhorn, and Tobias Nipkow. Trustworthy graph algorithms (invited paper). In The 44th International
Symposium on Mathematical Foundations of Computer Science (MFCS).
[4] Mohammad Abdulaziz and Lawrence C. Paulson. An Isabelle/HOL Formalisation of Green's Theorem.
[5] Miklos Ajtai. The shortest vector problem in L 2 is NP -hard for randomized reductions (extended abstract). In Proceedings of the
Thirtieth Annual ACM Symposium on Theory of Computing - STOC '98.
[6] Frank J. Balbach. The Cook-Levin theorem.
[7] Joppe W. Bos, Leo Ducas, Eike Kiltz, Tancrede Lepoint, Vadim Lyubashevsky, John M. Schanck, Peter Schwabe, and Damien
Stehle. CRYSTALS - Kyber: A CCA-secure module-lattice-based KEM.
[8] Davide Castelvecchi. Mathematicians welcome computer-assisted proof in 'grand unification' theory.
[9] Stephen A. Cook. The Complexity of Theorem-Proving Procedures. In 3rd Annual ACM Symposium on Theory of Computing
(STOC).
[10] prefix=van useprefix=false family=Doorn, given=Floris, Patrick Massot, and Oliver Nash. Formalising the h- Principle and Sphere



Eversion. In Proceedings of the 12th ACM SIGPLAN International Conference on Certified Programs and Proofs, CPP 2023, Boston,
MA, USA, January 16-17, 2023.
[11] Lennard Gaher and Fabian Kunze. Mechanising Complexity Theory: The Cook-Levin Theorem in Coq. In 12th International
Conference on Interactive Theorem Proving (ITP).
[12] Maximilian Paul Louis Haslbeck. Verified Quantitative Analysis of Imperative Algorithms (Verifizierte Quanti- tative Analyse von
Imperativen Algorithmen).
[13] Sudeep Kanav, Peter Lammich, and Andrei Popescu. A Conference Management System with Verified Document Confidentiality.
In The 26th International Conference on Computer Aided Verification (CAV).
[14] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David Cock, Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt,
Rafal Kolanski, Michael Norrish, Thomas Sewell, Harvey Tuch, and Simon Winwood. seL4: Formal verification of an OS kernel. In 22nd
ACM Symposium on Operating Systems Principles 2009 (SOSP).
[15] Peter Lammich and S. Reza Sefidgar. Formalizing Network Flow Algorithms: A Refinement Approach in Isabelle/HOL.
[16] Xavier Leroy. Formal verification of a realistic compiler.
[17] Filip Maric, Mirko Spasic, and Rene Thiemann. An Incremental Simplex Algorithm with Unsatisfiable Core Generation.
[18] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL - A Proof Assistant for Higher-Order Logic.
[19] Martin Rau and Tobias Nipkow. Verification of Closest Pair of Points Algorithms. In Automated Reasoning - 10th International
Joint Conference, IJCAR 2020, Paris, France, July 1-4, 2020, Proceedings, Part II.
[20] Adi Shamir. IP = PSPACE.
[21] Joseph Tassarotti and Robert Harper. A separation logic for concurrent randomized programs.



Software Verification and Nominal Dependent Type Theory
Supervisor: Maribel Fernandez

Areas: Systems (software engineering, programming), Foundations of computing (algorithms, computational
complexity)

Project Description

Dependent Type Theory is a mathematical tool to write formal specifications and prove the correctness of software
implementations. The proof assistants used to certify the correctness of programs (such as Coq), are based on
dependently typed higher-order abstract syntax. The goal of this project is to explore alternative foundations for proof
assistants using nominal techniques. The nominal approach has roots in set theory and has been successfully used to
specify programming languages. This project will focus on the combination of dependent types and nominal syntax and
explore the connections between the nominal approach and the higher-order syntax approach used in current proof
assistants.

References

Typed Nominal Rewriting, Elliot Fairweather and Maribel Fernandez, ACM Transactions on Computational Logic, vol.19, number 1,
2018.



Privacy in the Internet of Things
Supervisor: Maribel Fernandez

Areas: Cybersecurity, Systems (software engineering, programming)

Project Description

Data Collection policies are used to restrict the kind of data transmitted by devices in the Internet of Things (e.g., health
trackers, smart electricity meters, etc.) according to the privacy preferences of the user. The goal of this project is to
develop cloud/IoT architectures with integrated data collection and data sharing models, to allow users to specify their
own policies and trade data for services. For this, new data collection and data sharing models will have to be developed,
with appropriate user interfaces, policy languages, and policy enforcement mechanisms. An important aspect of the
project is the development of policy recommendation systems that can suggest/create policies based on user profiles,
making privacy an integral part of the system (according to the privacy-by-design" IoT paradigm).

References

A Privacy-Preserving Architecture and Data-Sharing Model for Cloud-IoT Applications, Maribel Fernandez; Jenjira Jaimunk; Bhavani
Thuraisingham IEEE Transactions on Dependable and Secure Computing, vol. 20, no. 4, pp. 3495-3507, 1 July-Aug. 2023, doi:
10.1109/TDSC.2022.3204720.




