Some of the books in the series. Max Saunders, Author provided.
My immersion in these historic visions of the future has also shown me that looking at this collection of sparkling projections can teach us a lot about current prediction attempts, which today are dominated by methodologies claiming scientific rigour, such as 'horizon scanning', 'scenario planning' and 'anticipatory governance'. Unlike the corporate, bland way in which most of this professional future-gazing takes place within government, think-tanks and corporations, the scientists, writers, and experts who wrote these books produced very individual visions.
They were committed to thinking about the future on a scientific basis. But they were also free to imagine futures that would exist for other reasons than corporate or governmental advantage. The resulting books are sometimes fanciful, but their fancy occasionally gets them further than today’s more cautious and methodical projections.
Forecasting future discoveries
Take J B S Haldane, the brilliant mathematical geneticist, whose book Daedalus; or: Science and the Future inspired the whole series in 1923. It ranges widely across the sciences, trying to imagine what remained to be done in each.
Haldane thought the main work in physics had been done with the Theory of Relativity and the development of quantum mechanics. The main tasks left seemed to him to be the delivery of better engineering: faster travel and better communications.
Chemistry, too, he saw as likely to be concerned more with practical applications, such as inventing new flavours or developing synthetic food, rather than making theoretical advances. He also realised that alternatives would be needed to fossil fuels and predicted the use of wind power. Most of his predictions have been fulfilled (though we’re still waiting eagerly for those new flavours, which have to be better than salted caramel).
It’s chastening, though, how much even such a clear-sighted and ingenious scientist missed, especially in the future of theoretical physics. He doubted nuclear power would be viable. He couldn’t know about future discoveries of new particles leading to radical changes to the model of the atom. Nor, in astronomy, could he see the theoretical prediction of black holes, the theory of the big bang or the discovery of gravitational waves.
But, at the dawn of modern genetics, he saw that biology held some of the most exciting possibilities for future science. He foresaw genetic modification, arguing that: “We can already alter animal species to an enormous extent, and it seems only a question of time before we shall be able to apply the same principles to our own.” If this sounds like Haldane supported eugenics, it’s important to note that he was vocally opposed to forced sterilisation, and didn’t subscribe to the overtly racist and ableist eugenics movement that was en vogue in America and Germany at the time.
But the development that caught the eye of so many readers was what Haldane called "ectogenesis" – his term for growing embryos outside the body, in artificial wombs. Many of the other contributors took up the idea, as did other thinkers – the most notable being Haldane’s close friend Aldous Huxley, who was to use it in Brave New World, with its human "hatcheries" cloning the citizens and workers of the future. It was also Haldane who coined the word "clone".
Ectogenesis still seems like science fiction. But the reality is getting closer. It was announced in May 2016 that human embryos had been successfully grown in an artificial womb for 13 days – just one day short of the legal limit, which prompted an inevitable ethical row. And in April 2017 an artificial womb designed to nurture premature human babies was successfully trialled on sheep. So even that prediction of Haldane’s may well be realised soon, perhaps within a century after it was made. Although artificial wombs will probably be used, at first, as a prosthesis to cope with medical emergencies, before they become routine options, on a par with caesareans or surrogacy.